FLAG ALGEBRAS

Ping Hu

FLAG ALGEBRAS

Seminal paper: Razborov, Flag Algebras, *Journal of Symbolic Logic* **72** (2007), 1239–1282. David P. Robbins Prize of AMS for Razborov in 2013

FLAG ALGEBRAS

Seminal paper:

Razborov, Flag Algebras, *Journal of Symbolic Logic* **72** (2007), 1239–1282.

David P. Robbins Prize of AMS for Razborov in 2013

EXAMPLE (GOODMAN, RAZBOROV)

If the density of edges is at least $\rho > 0$, what is the minimum density of triangles?

- Designed to attack extremal problems.
- Works well if constraints as well as desired value can be computed by checking small subgraphs (or average over small subgraphs).
- The results are for the limit as graphs get very large.

Let G be a 2-edge-colored complete graph on n vertices.

The probability that three random vertices in G span a red triangle, i.e. $\#\bigvee/\binom{n}{3}$.

Let G be a 2-edge-colored complete graph on n vertices.

The probability that three random vertices in G span a red triangle, i.e. $\#\sqrt{\binom{n}{3}}$.

The probability that three random vertices in *G* span a triangle with one red and two blue edges.

Let G be a 2-edge-colored complete graph on n vertices.

The probability that three random vertices in G span a red triangle, i.e. $\#\bigvee/\binom{n}{3}$.

The probability that three random vertices in *G* span a triangle with one red and two blue edges.

The probability that a random vertex other than v is connected to $v \in V(G)$ by a red edge, i.e., the red degree of v divided by n-1.

Let G be a 2-edge-colored complete graph on n vertices.

The probability that three random vertices in G span a red triangle, i.e. $\#\bigvee/\binom{n}{3}$.

The probability that three random vertices in *G* span a triangle with one red and two blue edges.

The probability that a random vertex other than v is connected to $v \in V(G)$ by a red edge, i.e., the red degree of v divided by n-1.

Let G be a 2-edge-colored complete graph on n vertices.

The probability that three random vertices in G span a red triangle, i.e. $\#\bigvee/\binom{n}{3}$.

The probability that three random vertices in G span a triangle with one red and two blue edges.

The probability that a random vertex other than v is connected to $v \in V(G)$ by a red edge, i.e., the red degree of v divided by n-1.

Let G be a 2-edge-colored complete graph on n vertices.

The probability that three random vertices in G span a red triangle, i.e. $\#\bigvee/\binom{n}{3}$.

The probability that three random vertices in *G* span a triangle with one red and two blue edges.

The probability that a random vertex other than v is connected to $v \in V(G)$ by a red edge, i.e., the red degree of v divided by n-1.

Type is a flag induced by labeled vertices

Let G be a 2-edge-colored complete graph on n vertices. Then

Same as

Let G be a 2-edge-colored complete graph on n vertices. Then by the law of total probability

Expanded version:

$$P\left(\begin{array}{c} \\ \end{array}\right) = P\left(\begin{array}{c} \\ \end{array}\right) \cdot \bigvee + P\left(\begin{array}{c} \\ \end{array}\right) \cdot P\left(\begin{array}{c} \\ \end{array}\right) \cdot P\left(\begin{array}{c} \\ \end{array}\right) + P\left(\begin{array}{c} \\ \end{array}\right) \cdot P\left(\begin{array}{c}$$

Let G be a 2-edge-colored complete graph on n vertices. Then

$$\bigvee_{v} \times \bigvee_{v} = \bigvee_{v} + o(1) = \bigvee_{v} + \bigvee_{v} + o(1)$$

o(1) as $|V(G)| \to \infty$ (will be omitted on next slides)

Let G be a 2-edge-colored complete graph on n vertices. Then

$$\bigvee_{v} \times \bigvee_{v} = \bigvee_{v} + o(1) = \bigvee_{v} + \bigvee_{v} + o(1)$$

The probability of choosing two different vertices . . .

o(1) as $|V(G)| \to \infty$ (will be omitted on next slides)

Let G be a 2-edge-colored complete graph on n vertices. Then

$$v \times v = v + o(1) = v + v + o(1)$$

$$v \times v = \frac{1}{2}v + o(1) = \frac{1}{2}v + \frac{1}{2}v + o(1)$$

: The probability of choosing two different vertices . . .

o(1) as $|V(G)| \to \infty$ (will be omitted on next slides)

Let G be a 2-edge-colored complete graph on n vertices. Then

$$v \times v = v + o(1) = v + v + o(1)$$

$$v \times v = \frac{1}{2}v + o(1) = \frac{1}{2}v + \frac{1}{2}v + o(1)$$

- The probability of choosing two different vertices ...
- $v \times v$: The probability that choosing two vertices u_1, u_2 other than v gives red vu_1 and blue vu_2 .
- o(1) as $|V(G)| \to \infty$ (will be omitted on next slides)

Let G be a 2-edge-colored complete graph on n vertices. Then

$$\frac{1}{3} \bigvee = \frac{1}{n} \sum_{v \in V(G)} \bigvee_{v}$$

Let G be a 2-edge-colored complete graph on n vertices. Then

$$\frac{1}{3} \bigvee = \frac{1}{n} \sum_{v \in V(G)} \bigvee_{v}$$

Let G be a 2-edge-colored complete graph on n vertices. Then

$$\frac{1}{3} \bigvee = \frac{1}{n} \sum_{v \in V(G)} \bigvee_{v}$$

$$= \frac{1}{n} \sum_{v \in V(G)} \bigvee_{v}$$

$$\binom{n}{3} = \sum_{v \in V(G)} \bigvee_{v} \binom{n-1}{2}$$

Let G be a 2-edge-colored complete graph on n vertices. Then

$$\frac{1}{3} \bigvee = \frac{1}{n} \sum_{v \in V(G)} \bigvee_{v}$$

$$= \frac{1}{n} \sum_{v \in V(G)} \bigvee_{v} \binom{n}{3} = \sum_{v \in V(G)} \bigvee_{v} \binom{n-1}{2}$$

$$\bigvee \binom{n}{3} = \frac{1}{3} \sum_{v \in V(G)} \bigvee_{v} \binom{n-1}{2}$$

IDENTITIES SUMMARY

Let G be a 2-edge-colored complete graph on n vertices. Then

$$1 = \sqrt{\frac{2}{3}} + \sqrt{\frac{2}{3}} + \sqrt{\frac{1}{3}} + \sqrt{\frac{0}{3}} + \sqrt{\frac{0}{3}}$$

$$= \frac{3}{3} + \sqrt{\frac{2}{3}} + \sqrt{\frac{1}{3}} + \sqrt{\frac{0}{3}} + \sqrt{\frac{0}{3}}$$

$$\frac{1}{3} \bigvee = \frac{1}{n} \sum_{v \in V(G)} \bigvee_{v} \qquad ; \bigvee = \frac{1}{n} \sum_{v \in V(G)} \bigvee_{v}$$

Example - Mantel's Theorem

THEOREM (MANTEL 1907)

A triangle-free n-vertex graph contains at most $\frac{1}{4}n^2 \approx \frac{1}{2}\binom{n}{2}$ edges. Assume edges are red and non-edges are blue.

Example - Mantel's Theorem

THEOREM (MANTEL 1907)

A triangle-free n-vertex graph contains at most $\frac{1}{4}n^2 \approx \frac{1}{2}\binom{n}{2}$ edges.

Assume edges are red and non-edges are blue.

THEOREM (MANTEL 1907)

A triangle-free n-vertex graph contains at most $\frac{1}{4}n^2 \approx \frac{1}{2}\binom{n}{2}$ edges.

Assume edges are red and non-edges are blue.

Assume = 0. (We want to conclude $\le \frac{1}{2}.$)

$$0 \le \left(1-2 \int_{0}^{1} v^{2}\right)^{2}$$

Example - Mantel's Theorem

THEOREM (MANTEL 1907)

A triangle-free n-vertex graph contains at most $\frac{1}{4}n^2 \approx \frac{1}{2}\binom{n}{2}$ edges.

Assume edges are red and non-edges are blue.

Assume
$$= 0$$
. (We want to conclude $\leq \frac{1}{2}$.)
$$0 \leq \left(1 - 2 v\right)^2 = \left(1 - 4 v + 4 v\right) + 4 v$$

Example - Mantel's Theorem

THEOREM (MANTEL 1907)

A triangle-free n-vertex graph contains at most $\frac{1}{4}n^2 \approx \frac{1}{2}\binom{n}{2}$ edges.

Assume edges are red and non-edges are blue.

Assume
$$\sqrt{}=0.$$
 (We want to conclude $\leq \frac{1}{2}.$)

$$0 \le \frac{1}{n} \sum_{v} \left(1 - 2 \int_{v}^{1} v \right)^{2} = \frac{1}{n} \sum_{v} \left(1 - 4 \int_{v}^{1} v + 4 \int_{v}^{1} v + 4 \int_{v}^{1} v \right)$$

THEOREM (MANTEL 1907)

A triangle-free n-vertex graph contains at most $\frac{1}{4}n^2 \approx \frac{1}{2}\binom{n}{2}$ edges.

Assume edges are red and non-edges are blue.

Assume
$$= 0.$$
 (We want to conclude $\le \frac{1}{2}.$)
$$0 \le \frac{1}{n} \sum_{v} \left(1 - 2 \frac{1}{v} \right)^2 = \frac{1}{n} \sum_{v} \left(1 - 4 \frac{1}{v} + 4 \frac{1}{v} \right)$$
$$= 1 - 4 + \frac{4}{3} + 4$$

$$\frac{1}{3} \bigvee = \frac{1}{n} \sum_{v \in V(G)} \bigvee_{v}$$

Example - Mantel's Theorem

THEOREM (MANTEL 1907)

A triangle-free n-vertex graph contains at most $\frac{1}{4}n^2 \approx \frac{1}{2}\binom{n}{2}$ edges.

Assume edges are red and non-edges are blue.

Assume
$$\sqrt{}=0$$
. (We want to conclude $\leq \frac{1}{2}$.)
$$0 \leq \frac{1}{n} \sum_{v} \left(1-2 \left[v\right]^{2}\right)^{2} = \frac{1}{n} \sum_{v} \left(1-4 \left[v\right] + 4 \left[v\right] + 4 \left[v\right]\right)$$
$$= 1-4 \left[v\right] + \frac{4}{3} \left[v\right] + 4 \left[v\right]$$

$$= \frac{2}{3} + \frac{1}{3} +$$

THEOREM (MANTEL 1907)

A triangle-free n-vertex graph contains at most $\frac{1}{4}n^2 \approx \frac{1}{2}\binom{n}{2}$ edges.

Assume edges are red and non-edges are blue.

Assume
$$\sqrt{}=0$$
. (We want to conclude $\leq \frac{1}{2}$.)
$$0 \leq \frac{1}{n} \sum_{v} \left(1-2 \frac{1}{v}\right)^2 = \frac{1}{n} \sum_{v} \left(1-4 \frac{1}{v}\right)^2 + 4 \sqrt{v}$$
$$= 1-4 \sqrt{1+\frac{4}{3}} \sqrt{1+\frac{4}{3}}$$

$$= \frac{2}{3} + \frac{1}{3}$$

THEOREM (MANTEL 1907)

A triangle-free n-vertex graph contains at most $\frac{1}{4}n^2 \approx \frac{1}{2}\binom{n}{2}$ edges.

Assume edges are red and non-edges are blue.

Assume
$$\sqrt{} = 0$$
. (We want to conclude $\leq \frac{1}{2}$.)
$$0 \leq \frac{1}{n} \sum_{v} \left(1 - 2 \int_{v}^{1} v \right)^{2} = \frac{1}{n} \sum_{v} \left(1 - 4 \int_{v}^{1} v + 4 \int_{v}^{1} v \right)$$

$$=1-4 \int +\frac{4}{3}$$

$$0=2 \quad \boxed{ \quad -\frac{4}{3} \quad \sqrt{ \quad -\frac{2}{3} \quad }}$$

$$= \frac{2}{3} \bigvee + \frac{1}{3} \bigvee$$

THEOREM (MANTEL 1907)

A triangle-free n-vertex graph contains at most $\frac{1}{4}n^2 \approx \frac{1}{2}\binom{n}{2}$ edges.

Assume edges are red and non-edges are blue.

Assume
$$= 0.$$
 (We want to conclude $\le \frac{1}{2}.$)
$$0 \le \frac{1}{n} \sum_{v} \left(1 - 2 \frac{1}{v} \right)^{2} = \frac{1}{n} \sum_{v} \left(1 - 4 \frac{1}{v} + 4 \frac{1}{v} + 4 \frac{1}{v} \right)$$
$$= 1 - 4 \frac{1}{4} + \frac{4}{3} \frac{1}{3}$$
$$= 1 - 2 \frac{2}{3} \frac{1}{3} + \frac{1}{3} \frac{1}{3}$$
$$= \frac{2}{3} \frac{1}{3} + \frac{1}{3} \frac{1}{3}$$

Example - Mantel's Theorem

THEOREM (MANTEL 1907)

A triangle-free n-vertex graph contains at most $\frac{1}{4}n^2 \approx \frac{1}{2}\binom{n}{2}$ edges.

Assume edges are red and non-edges are blue.

Assume
$$= 0$$
. (We want to conclude $\leq \frac{1}{2}$.)
$$0 \leq \frac{1}{n} \sum_{v} \left(1 - 2 \int_{v}^{1} v \right)^{2} = \frac{1}{n} \sum_{v} \left(1 - 4 \int_{v}^{1} v + 4 \int_{v}^{1} v + 4 \int_{v}^{1} v \right)$$

$$= 1 - 4 \int_{v}^{1} + \frac{4}{3} \int_{v}^{1} v + 4 \int_{v}^{$$

FLAG ALGEBRAS SUMMARY

- Calculations performed over formal linear combinations of graphs
- Evaluated on limits of convergent graph sequences
- Asymptotic results only