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Abstract. In this work, we discuss a strengthening of a result of Füredi
that every n-vertex Kr+1-free graph can be made r-partite by removing
at most T (n, r)−e(G) edges, where T (n, r) = r−1

2r
n2 denotes the number

of edges of the n-vertex r-partite Turán graph. As a corollary, we answer
a problem of Sudakov and prove that every K6-free graph can be made
bipartite by removing at most 4n2/25 edges. The main tool we use is the
flag algebra method applied to locally definied vertex-partitions.
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1 Introduction

Let G = (V,E) be an n-vertex graph and r ≥ 2 an integer. Denote by delr(G)
the minimum size of an edge-subset X ⊆ E such that the graph G − X is
r-partite. Note that del2(G) is the dual problem to Max-Cut, i.e., finding the
largest bipartite subgraph in G. For convenience, we also define del1(G) := e(G).

Our aim is to obtain upper bounds on delr(G) and del2(G), respectively,
when G is a Kr+1-free graph, i.e., a graph with no complete subgraph on r + 1
vertices. A beautiful stability-type argument of Füredi [6] provides the following
upper bound on delr(G).

Theorem 1. (Füredi [6]). Fix an integer r ≥ 2. If G is an n-vertex Kr+1-free
graph, then delr(G) ≤ r−1

2r · n2 − e(G).

Note that the number of edges in every Kr+1-free graph on n vertices is bounded
from above by the number of edges in the Turán graph T (n, r), which is equal
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to r−1
2r · n2. In other words, the result of Füredi can be stated as follows: if a

Kr+1-free graph is missing t edges to being extremal, then removing at most t
edges from it makes it r-partitie.

When the number of edges of G is very close to the extremal value, Theorem 1
was sharpened in [2,7]. Here we focus on a global improvement, and conjecture
that Theorem 1 can be strengthened as follows.

Conjecture 1. Fix an integer r ≥ 2. If G is an n-vertex Kr+1-free graph, then
delr(G) ≤ 0.8

(
r−1
2r · n2 − e(G)

)
.

If true, Conjecture 1 would be best possible, and we present tight constructions
in Sect. 3. Note that for r ≥ 4, the conjecture does not have a unique extremal
example. To provide an evidence for Conjecture 1, we prove it for r ∈ {2, 3, 4}.
Theorem 2. Fix an integer r ∈ {2, 3, 4}. If G is an n-vertex Kr+1-free graph,
then delr(G) ≤ 0.8

(
r−1
2r · n2 − e(G)

)
.

We also establish the following general improvement on Theorem 1.

Theorem 3. For every r ≥ 5 there exists ε := ε(r) > 0 such that the
following holds. If G is an n-vertex Kr+1-free graph, then delr(G) ≤ (1 −
ε)

(
r−1
2r · n2 − e(G)

)
.

The bound on ε(r) we establish monotonically decreases to 0 as r tends to
infinity, while Conjecture 1 claims that ε(r) = 0.2 for every r.

A closely related problem inspired by a well-known problem of Erdős on Max-
Cuts in dense triangle-free graphs is the following conjecture of Sudakov [9].

Conjecture 2. Fix r ≥ 3. For every Kr+1-free graph G, it holds that

del2(G) ≤
{

(r−1)2

4r2 · n2 r odd, and
r−2
4r · n2 r even.

Note that the conjectured value corresponds to the value of del2(T(n, r)).
Sudakov [9] proved the conjecture for r = 3.

Theorem 4. (Sudakov [9]). An n-vertex K4-free graph G can be made bipar-
tite by removing n2/9 edges, i.e., del2(G) ≤ n2/9. Moreover, if del2(G) = n2/9,
then G is the Turán graph T (n, 3).

We prove the conjecture for r = 5.

Theorem 5. If G is an n-vertex K6-free graph, then del2(G) ≤ 4n2/25. More-
over, if del2(G) = 4n2/25, then G is the Turán graph T (n, 5).

As we have already mentioned, Erdős [4] made a conjecture on the size of
the largest bipartite subgraph in triangle-free graphs. Specifically, he conjectured
that del2(G) ≤ n2/25 for every triangle-free n-vertex graph G. A result of Erdős,
Faudree, Pach, and Spencer [5] states that del2(G) ≤ n2/18. Using flag algebras
in a manner analogous to the one we use here, an improvement on the last bound
was recently announced by Balogh, Clemen, and Lidický [3].
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Note that for all the theorems in this section, a straightforward application
of the regularity lemma yields the corresponding asymptotic results for H-free
graphs, where H is a fixed r-colorable graph.

In our work, we extensively use flag algebras, a versatile tool developed by
Razborov [8], applied to Kr+1-free graph limits. We use as a convention that
unlabeled vertices are depicted as black circles, labeled vertices as yellow squares,
and edges as blue lines. Dashed lines indicate that both edge and non-edge are
admissible. We write [[.]] to denote the so-called unlabeling/averaging operator.

The rest of this extended abstract is organized as follows: In Sect. 2, we
describe an alternative proof of Theorem 1 using flag algebras, which demon-
strates the technique we use. In Sect. 3, we examine the set of possible extremal
constructions for Conjecture 1, and give a sketch of the proof of Theorem 2 for
the case r = 2. We conclude the extended abstract by Sect. 4, where we briefly
discuss the case r ≥ 3 as well as the ideas for the proof of Theorem 5.

2 Theorem 1 in Flag Algebras

As a warm-up to our flag algebra technique, we present a proof of Theorem 1.
Suppose Theorem 1 is false, and let r be the smallest integer for which it fails.
Let G be an n-vertex Kr+1-free graph G such that delr(G) > r−1

2r · n2 − e(G).
For a vertex v ∈ V (G), consider an r-partition of V (G) with Ar := V \ N(v)

being one part, and (A1, A2, . . . , Ar−1) being an (r − 1)-partition of N(v) given
by Theorem 1 if r ≥ 3, and A1 := N(v) in case r = 2. Note that if r = 2 then
N(v) induces no edges in G. It follows that the number of edges inside the parts
is at most e(G[Ar]) + delr−1(G[N(v)]), which is as most

e(G[Ar]) +
r − 2
r − 1

· |N(v)|2
2

− e(G[N(v)]). (1)

On the other hand, this is at least delr(G) > r−1
2r · n2 − e(G). This is in direct

contradiction with the following simple flag algebra proposition, which shows
that if we choose a vertex v uniformly at random, then the expectation of (1) is
at most r−1

2r · n2 − e(G).

Proposition 1. Fix r ≥ 2. If φ is a Kr+1-free graph limit, then

φ

(
[[ +

r − 2
r − 1

× − − r − 1
r

× + ]]
)

≤ 0.

Proof. We will show that the following identity holds for every r ≥ 2.

(
r − r2

) · [[ +
r − 2
r − 1

× − − r − 1
r

× + ]]

= [[
(
(r − 1) × −

)2

]].
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Note that the identity immediately proves the statement since the right-hand
side is non-negative while r − r2 < 0. Firstly, observe that the left-hand side is
equal to

[[
(
1 − r2

)
+ + +(r − 1)2

(
+

)
− (r − 1) ]] .

By the definition of [[·]], the previous expression averages to the following:

(r − 1)2 × +
(r − 1)(r − 3)

3
× − 2r − 3

3
× + . (2)

On the other hand, the right-hand side of the identity is equal to

(r − 1)2 ×
(

+
)

− (r − 1) ×
(

+
)
+ + ,

which again averages to (2). This finished the proof. ��
Proposition 1 and the following lemma yield the statement of Theorem 1.

Lemma 1. Fix positive integers r, b and �. If G is a Kr+1-free graph then its
b-blow-up G[b] is Kr+1-free and del�(G[b]) = b2 · del�(G).

An inspection of the just presented proof yields that the bound in Theorem 1
is tight only if G is a Turán graph. Indeed when G = T (n, r), Theorem 1 does
not allow to remove any edge. However, this is rather a technical “obstacle” and
Conjecture 1 can be seen as a way how to bypass it.

3 Tight Constructions for Conjecture 1

Clearly, Conjecture 1 is tight for Turán graphs since the bound T (n, r) − e(G)
does not allow deletion of any edges. When r = 2, the complete balanced bipar-
tite graph and a balanced blow-up of C5 attains the bound 0.8(n2/4 − e(G)).
Therefore, blow-ups of C5 behave similarly as a complete bipartite graph with
respect to Conjecture 1, and this propagates to larger r.

Given r ≥ 2, a tight construction for Conjecture 1 can be obtained as follows:
Let H be a join of a copies of K1 and b copies of C5, where a+2b = r. Let G be
a blow-up of H, such that all the vertices corresponding to K1s have the weight
1/r and all the vertices corresponding to C5s have the weight 2/(5r).

When r ∈ {2, 3, 4}, we prove the above description of the tight constructions
for Theorem 2 is complete, see also Fig. 1.



Large Multipartite Subgraphs in H-free Graphs 711

1
3

2
15

2
15

2
15

2
15

2
15

1
4

1
4

1
10

1
10

1
10

1
10

1
10

1
10

1
101

10 1
10

1
10

1
10

1
10

1
10

1
101

10

Fig. 1. Non-Turán tight constructions for Theorem 2 when r = 3 and r = 4.

3.1 Proof of Theorem 2 When r = 2

Let N be the non-edge type with labels u and w, and let C be the combination
of N -flags that expresses the size of the cut (L,R) with L := N(u) ∪ N(v) and
R := V \ L. Next, we define

O := KN
3 × (C − 0.8(1/2 − d(G))) = KN

3 × (
C − 0.4(d(G) − d(G))

)
,

which can be expressed using flag algebras as follows:

u

w RL O = ×
[

+ − 2
5

(

−
)]

.

Notice that 1
2 − d(G) is the density of missing edges to the complete bipartite

graph, and 0.8(12 − d(G)) is the normalized number of edges we are allowed to
delete in Conjecture 1 when r = 2. In order to prove Conjecture 1, we need to
show that the expression O is non-positive in triangle-free graphs.

Theorem 6. If φ is a K3-free graph limit, then φ([[O]]) ≤ 0. Moreover, if

φ([[O]]) = 0, then φ1

( )
∈ {0.4, 0.5} almost surely.

Proof. First, let F1 :=
(

−
)

×
(
6 × − 4 ×

)
. Observe

that if φ([[F 2
1 ]]) = 0 then φ1

( )
∈ {0.4, 0.5} almost surely.

Next, consider the following two vectors X and Y of σ-flags, where σ is the
one-vertex type and the co-cherry type, respectively, and the following 7 linear
combinations of flags using X and Y :
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X =

⎛

⎜
⎝ , , , ,

⎞

⎟
⎠ , (3)

Y =

⎛

⎜
⎝ , , , ,

⎞

⎟
⎠ . (4)

F1 = X · (4, 4,−5,−5, 6), F4 = Y · (0, 1,−1, 1,−1), F7 = Y · (6, 1, 1,−4,−4),

F2 = X · (6,−9, 0, 0,−6), F5 = Y · (0, 1,−1, 2,−2), F8 = Y · (2,−2,−2, 1, 1).

F3 = X · (4, 0,−3,−4, 4), F6 = Y · (0, 2,−2, 1,−1),

We express each term as a linear combination of 5-vertex unlabeled flags
and establish the following estimate on [[O]] for some non-positive rationals
w1, w2, . . . , w8:

[[O]] ≤
∑

i∈{1,2,...,8}
wi × [[F 2

i ]].

Hence, φ([[O]]) ≤ 0. Moreover, if the equality is attained for some limit φ, then
φ([[F 2

i ]]) = 0 for all i ∈ [8] by complementary slackness. In particular, we have

φ1

( )
∈ {0.4, 0.5} for almost every choice of the root. ��

Lemma 1 readily translates Theorem 6 to the setting of finite graphs, and a
result of Andrásfai, Erdős and Sős [1] yields that the only non-bipartite tight
graph in Theorem 2 when r = 2 is a balanced blow-up of C5.

4 Concluding Remarks

An analogous approach to Conjecture 1 when r = 2 can be applied to the cases
r = 3 and r = 4, although more locally defined partitions and more sum-of-
squares are needed. The proof of Theorem 5 is also very similar, and in fact
the simplest form we have found consists only of five sum-of-squares, a natural
partition tuned to perform optimally on the corresponding Turán graphs, and
an application of Theorem 6.

One of the main reasons why the complexity of the proof grows with r is the
increasing number of tight constructions, and it is not obvious how to generalize
this approach to all r. Nevertheless, bootstraping from Theorem 6, we establish
a much more modest improvement described in Theorem 3.
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